
Internet Protocols for Network-Attached Peripherals

Steve Hotz, Rodney Van Meter, and Gregory Finn
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292
fhotz,rdv,�nng@isi.edu
tel +1-310-822-1511
fax +1-310-823-6714

Abstract

This paper presents our thesis that the advantages of the internet protocol
framework make it the best choice for communications protocols to, and be-
tween, network-attached peripherals (NAPs). Moreover, the IP suite is more
appropriate than the specialized protocol stacks being developed for commercial
NAPs. The bene�ts of using IP include support for heterogeneous network me-
dia, wide-area connectivity, and reduced research and development e�ort. We
examine the issues for use of the internet protocols (TCP/UDP/IP) for NAPs,
address commonly held concerns regarding its performance, and describe the
Netstation project's prototype implementations of IP peripherals.

1 Introduction

Netstation is a research system architecture based on a switched gigabit network as a
system backplane [10]; all of the major subsystems are network attached peripherals
(NAPs). A network-attached display has been prototyped, and a software-emulated
network-attached disk has been implemented. A camera NAP is also under develop-
ment, based on the same motherboard as the display.

One of the primary decisions in designing such a system is the choice of a commu-
nication infrastructure. To provide maximal ubiquity and independence from speci�c
media technologies, Netstation component communication is based on the TCP/IP
protocol suite. This design choice is controversial, in that most commercial NAP ef-
forts (e.g., Tandem's ServerNet [15], Fibre Channel and HiPPI disks and disk arrays)
and some research projects (e.g., Minnesota's GFS [21]) use special purpose protocol
stacks optimized for performance on speci�c media. Among research systems, the
most similar e�ort is the High Performance Storage System NAP at Lawrence Liver-
more [26]. Digital's Petal [18] uses UDP/IP over ATM as part of a large distributed
virtual disk system implemented in general-purpose hosts. CMU's Network Attached
Secure Disk [13] does use IP for its higher level protocols which are derived from NFS,
however, they provide a network \object store" rather than a block-level NAP. The



two projects most closely related to Netstation are MIT's ViewStation [1] and Cam-
bridge's Desk Area Network [14], both of which use ATM to interconnect multimedia
peripherals.

The main reason cited for choosing a specialized protocol rather than the media-
independent TCP/IP approach is the latter's perceived lack of performance, or the
expense to achieve the required performance. We believe that the advantages of
TCP/IP merit further consideration for its use in NAP applications, and that the
performance concerns are based on inaccurate comparisons with specialized protocol
performance. We argue this by examining protocol functionality and its overhead,
and by presenting results of our implementation experience.

This paper presents the case for TCP/IP based NAPs. Section 2 discusses the
current trend for NAP protocols, provides an overview of the IP protocol suite, and
discusses the the use of TCP/IP for NAPs. Section 3 addresses the functionality
and potential performance problems of using TCP/IP for NAPs, and Section 4 dis-
cusses implementation issues that are often perceived as protocol performance limi-
tations. Section 5 describes the Netstation prototype implementations and their use
of TCP/IP, and our conclusions are summarized in Section 6.

2 Protocols for Network Attached Peripherals

Networks such as HiPPI, SSA and Fibre Channel are becoming the access technol-
ogy of choice for peripherals such as disk drives, tape drives and disk arrays. These
networks scale better than traditional I/O channels, connecting more devices over
greater distances and providing greater aggregate bandwidth. However, these net-
works require more complex protocols than are required for traditional bus-based
channels such as SCSI.

The NAP community, in most cases, has chosen to use specially developed proto-
cols similar to channel access protocols rather than existing network standards such
as TCP/IP, because of perceived di�erences in functionality, focus, complexity and
especially performance. We reason that most of these concerns either re
ect misun-
derstanding of the IP suite or are being met as the suite evolves.

We further argue that the bene�ts of using IP, including wide-area connectivity,
cross-media bridging and reduced research and development e�orts, are substantial.
Specialized protocols simply do not address inter-LAN communication, which will
be important as machine rooms integrate new LAN technologies into increasingly
heterogeneous computing environments, and as new uses for sharing NAPs over a
wider campus area emerge.

Therefore, we believe that IP is the best choice for storage device peripherals, and
should be the protocol selected by NAP system architects.

2.1 IP Framework Overview and De�nitions

Throughout this paper we use the terms \IP protocol suite", \IP protocol framework",
or \TCP/IP protocol suite". We use these terms interchangeably to refer to a set of
protocols that provide the functionality of the network layer and transport layer of



the OSI seven-layer reference model. Speci�cally, this set of protocols are the DARPA
Internet Protocols, and they include the Internet Protocol (IP) at the network layer,
and both the Transmission Control Protocol (TCP) and the User Datagram Protocol
(UDP) at the transport layer. It is important to note that there is exactly one network
layer protocol, while there are multiple transport layer protocols. UDP and TCP are
the most common and thus will be discussed in more detail. However, the framework
does allow for other transport layer protocols.

The network layer protocol, IP, provides the basic functionality of exchanging
packets of data between any two entities connected to an internet, i.e., a network
of networks which may include many di�erent physical media and link layer proto-
cols. The primary philosophy is that this protocol must be ubiquitous: IP runs on
everything, and everything runs on IP. IP is intentionally simple and provides very
basic functionality which allows it to be implemented on even the simplest of lower-
layer protocols. It provides no guarantees on data delivery other than if a packet
is delivered, it is delivered to the end host with the speci�ed address. To this end,
IP provides a common addressing scheme, a simple header checksum to guarantee
that the addresses are not corrupted, and a mechanism to fragment and reassemble
packets to accommodate transmission over link layers with di�erent maximum packet
sizes.

The transport protocols, TCP and UDP, build on top of IP, exchanging their own
headers and data payloads using the basic facilities provided by IP. These protocols
use di�erent mechanisms to provide various levels of end-to-end functionality. UDP
provides simple user-level access to the basic unreliable service provided by IP, and as
such, it adds very little overhead to the exchange of data. On the other hand, TCP
provides for a reliable, in order, byte stream and is by far the most complex of the
three protocols discussed here.

There exists other related and supporting protocols, such as an Address Resolu-
tion Protocol (ARP) for mapping IP addresses to link-layer addresses, and various
routing protocols to exchange information so that intermediate internetwork nodes
can determine the correct disposition and forwarding of IP packets to their desti-
nation. However, these other protocols do not directly impact the per-packet data
processing overhead at end systems, and consequently are only mentioned brie
y in
this paper.

2.2 IP for NAPs

Choosing IP as the communication infrastructure for NAPs alleviates the problems
of committing to a protocol suite which is tied, for the most part, to the choice
of physical media, e.g., Fibre Channel or ATM. This provides a growth path that
is unconstrained by the future development of a particular technology. In the same
vein, IP allows for cross-media bridging with minimal incremental e�ort. Cross-media
bridging will be useful given increasingly heterogeneous computing environments,
allowing transparent interoperation among di�erent types of networks. Finally, the
wide area connectivity that is IP's strength opens up new functionality for peripherals,
for example, remote mirroring of disk drives and remote backup.



Using IP will allow NAP developers to exploit the large existing body of research
and development in 
ow control, routing, congestion control, and reliability. This will
reduce R&D e�ort, as well as allowing quick integration of emerging features such
as resource reservation and real-time protocols. The e�ort to adapt and optimize IP
implementations for the NAP environment should prove less costly than reinventing
pieces of the network solution as new NAP requirements are realized.

We believe the concerns about IP performance are founded on comparisons be-
tween IP and specialized protocols, and that the performance di�erences are more
dependent on implementation and environment than on the complexity of the proto-
cols themselves. IP performance measurements are typically made in general purpose
(and often outdated) operating systems with protocol implementations tuned for
wide-area communication using relatively small packets, while NAP protocol perfor-
mance bene�ts from a low-cost embedded operating environment, large data packets,
and specialized protocol coprocessors.

These concerns about IP performance and complexity should prove to be non-
issues. The issues and di�erences can be classi�ed and addressed in a general way as
follows:

� Protocol functionality required by NAPs, already provided by IP.
NAPs will bene�t from the functionality such as segment size negotiation, re-
liability, 
ow control, and cross-media bridging already provided by IP. These
common functionality requirements are the main motivation driving the use of
IP for NAPs.

� IP protocol functionality and complexity not required by NAPs. Con-
cerns about the performance impact of additional "baggage" functionality can
be addressed by fast-path and common-case implementations. As evidence,
we note that the combined transport (TCP) and network (IP) processing of
common-case packets has already been optimized to approximately 200 machine
instructions, which would cost 2-8 microseconds on a typical NAP-embedded
microprocessor.

� Protocol functionality required by NAPs, not provided by IP. While
NAPs can take advantage of IP to avoid re-inventing a variety of technologies
and functionality, there are clearly cases where the NAP community can (and
must) extend the IP framework. Support for application-layer framing and fast
application demultiplexing might be addressed by transport-layer options, or
may require a new transport protocol to complement the existing UDP and
TCP. Section 3.3 discusses these issues in more detail.

� Implementation and operating system issues. Many of TCP/IP's known
performance problems come from outdated implementations or restrictions im-
posed from outside, such as data copies through the UNIX socket API and
ethernet's small packet size limit. This overhead is considerable compared to
the actual fast-path protocol processing. These problems will disappear as the
protocol stack is moved into the highly-optimized embedded NAP environment.
Section 4 discusses these issues in more detail.



We reason that as systems move to larger, more complex switched networks for
I/O, some sacri�ce of performance is the inevitable result. However, IP has no in-
herent performance penalty relative to other protocol choices; the loss is entirely
attributable to managing the additional complexity. In this environment, IP o�ers
signi�cant advantages and few drawbacks. IP, therefore, should be the network pro-
tocol of choice for network-attached peripherals.

2.3 NAP Implementations of the IP Protocol Suite

We do not expect that performance-critical NAPs will run based on current IP im-
plementations, or without additional development of the IP protocol suite. Rather,
there is an open IP framework for network communication, and NAP networking de-
velopment could bene�t from working within this framework. Within this framework
there are both design changes that can not be made, and considerable 
exibility to
accommodate NAP requirements.

The discussion in Section 2.1 points out those parts of the IP suite that will not
change, speci�cally, the IP network layer protocol itself. To be an IP NAP, a device
must implement the IP protocol.

There are three general approaches that NAP developers can take to adapt the
IP protocol suite for their devices:

� Use protocol options. Protocols of the IP suite, including IP and TCP, de�ne
protocol options that allow the protocol to provide additional required features
on a per-use basis, e.g. per IP packet or per TCP connection. If existing
options do not provide for e�cient NAP communications, new options can be
introduced within the IP protocol framework.

� Optimize implementations for expected NAP usage patterns. IP pro-
tocol implementations can bene�t from many of the same optimizations that
facilitate specialized NAP protocol performance. Section 4 discusses these issues
in more detail.

� Develop an alternative IP-based transport protocol. TCP and UDP are
the most widely used transport protocols in the IP suite, however, alternate
transport protocols can also be supported within this framework (section 2.1).
Sections 3.2 and 3.3 discuss transport protocol issues in more detail.

We believe these methods will allow NAP developers to adapt the IP protocol
suite to their high-performance requirements, and gain the bene�ts of IP's inter-LAN
connectivity. Further, the development e�ort to adopt the IP suite can build on IP's
years of development experience to solve NAP-speci�c issues, and this e�ort should
be less complex than the e�ort to develop media-speci�c protocols for NAPs.

3 TCP/IP Protocol Stack Issues

This section examines the functionality of the TCP/IP protocol to address the issue
of complexity, and determine why the performance may be suitable (or unsuitable)
for NAPs.



Our general premise is \you get what you pay for"; functionality required by NAPs
will have approximately the same overhead, regardless of whether it is implemented
within an IP framework or in a specialized NAP protocol stack. Further, the overhead
for portions of IP not required by NAPs can be minimized by fast-path, common-case
implementations. The transport (TCP) and network (IP) processing of common-
case incoming packets has already been optimized to approximately 200 machine
instructions. This number was observed in [6], and is con�rmed by analysis of our
TCP/IP implementation for the Netstation display. This would allow a baseline
250,000 packets/sec on a relatively humble 50MIPS embedded NAP processor. This
simple analysis indicates that the TCP/IP processing is not a performance bottleneck
that would make it unsuitable for NAPs.

3.1 Network Layer Processing

Examination of the IP network-layer implementation shows that the IP end-host pro-
cessing requires a relatively small amount of code. There are four primary functions
that would a�ect an IP NAP: packet header processing, header checksum calculation,
byte-swapping, and fragmentation reassembly. None of these functions represent a
prohibitive processing cost.

Processing of the 20-byte IP header is straightforward, and should not represent
a signi�cant incremental overhead beyond processing for a specialized NAP protocol.
The required processing on outgoing packets generally involves an e�cient bulk copy
of a 5-word template, and then 4 load and store operations to modify the packet iden-
ti�er, length, destination address, and checksum �elds. To verify proper reception, a
simple implementation would have a compare and branch operation for each of the
12 header �elds, although optimization can reduce this even further.

The short IP header checksum calculation involves 12 16-bit add operations, 2
shifts and 3 mask operations; the nature of the checksum would allow optimizations
using larger (32-bit) add operations. Although the header checksum itself is not a
prohibitive cost, data checksumming incurs considerable overhead; we address data
checksumming in Section 3.2.

Byte-swapping is necessary only for little-endian machines, where byte order does
not match network standard byte order [7]. However, it is an operation that may
a�ect all network communications, thus this discussion applies to transport layer
processing as well. Moreover, this implies that even in a non-IP NAP, this function
is required to support heterogeneous hosts.

The most complex, and potentially expensive, functionality we must deal with is
IP fragmentation reassembly. Fortunately, we can virtually eliminate this processing
by sending appropriately sized transport layer segments. Sending such segments
should be straightforward for common-case NAP applications on a single local area
network (LAN) where the maximum frame size is known. Mechanisms such as MTU
discovery [19] can provide the analogous information across a WAN. For both cases,
higher layer communication protocols can avoid packet fragmentation by negotiating
the segment size; this is speci�cally supported by TCP's Maximum Segment Size
option.



3.2 Transport Layer

Transport layer functionality is more complex than that of the network layer. In
the case of TCP, it provides for in-order reliable delivery, with a number of window
and congestion control mechanisms. However, we also do not believe transport layer
functionality will prove prohibitive, rather this is the area where NAP developers
would focus their e�orts.

The general reasons that we believe transport functionality in an IP stack is not
prohibitive are as follows:

� UDP is available as a lower-overhead alternative. Assuming that NAPs
will be commonly accessed within a local environment, the general-purpose
functionality provided by TCP may not be needed. UDP provides a very simple
protocol that provides for connection demultiplexing and checksumming. Both
our Netstation VISA protocol (Section 5.2) and the common NFS protocol [22]
implement their own simple reliability for LAN communications on top of UDP.

� Fast-path TCP is already reasonably e�cient. As noted earlier in the
paper, the common-case TCP overhead allows for many thousands of packets
per second, provided system issues such as data copies, context switching, and
checksumming are addressed. These issues must be dealt with in either the case
of an IP or a non-IP NAP.

� IP can support other transport protocols. This paper argues primarily
for an IP NAP, and that there would be considerable advantage if NAP devel-
opment could exploit either of the existing transport protocols (UDP and TCP)
by providing implementations optimized for the NAP environment. However,
IP already supports multiple transport protocols, and recasting current NAP-
speci�c transport protocols into the IP framework seems a viable alternative.
New general-purpose transport protocols face a practical hurdle on account of
the large installed base of TCP and UDP, and need for widespread deployment
and backward compatibility. However, a NAP transport protocol could be de-
ployed incrementally as NAPs are integrated into the computing environment,
which would mitigate this issue of ubiquitous deployment.

These general observations allow for the feasibility of an IP NAP with appropri-
ate transport functionality. Due to the number of transport protocols and di�erent
levels of service, we cannot address the spectrum of transport protocol functional-
ity. However, the most important transport functionality that a NAP would have to
address will be common to any protocol, speci�cally data checksumming and retrans-
mission and reliability. The issues of connection demultiplexing and segmentation
and reassembly are addressed in the following section.

Computing a checksum over the entire data packet is one of the biggest obstacles
to low-overhead transport performance. In the case of a NAP (or any network node),
either reliability guarantees are required from the transport layer or they are not. If
this functionality is to be provided, the checksum overhead is incurred regardless of the



particular protocol framework. If a checksum is not required or is not used by a NAP-
speci�c protocol, then an IP-based stack can also eliminate this overhead. Currently,
the UDP speci�cation allows for non-checksummed payloads, and in the future, NAP
developers could incorporate this functionality into their preferred transport layer
protocol. E�cient checksum implementation is discussed in Section 4.

Our reasoning about reassembly and reliability mechanisms at the transport layer
is much the same as for checksumming; either this functionality is needed, or the media
layer provides su�cient guarantees to allow a simpler mechanism. In the former case,
TCP has years of development lead time, in the latter case UDP provides a simple
low-cost framework, and there is the option of developing another transport protocol
to run over IP.

3.3 Open Issues

We classify the e�orts required to achieve IP NAPs as either addressing implemen-
tation and system issues (discussed in Section 4), or as protocol development e�orts.
The latter includes (1) the selection, design, and development of a transport proto-
col and transport protocol options, and (2) providing support for application layer
functionality.

The transport layer issue is of practical as well as technical importance. The
perceived lack of a suitable standard transport protocol is perhaps the most signi�cant
barrier to the development of IP NAPs. We have also run into this issue within
the Netstation project, and are not 100% decided after having experimented with
UDP, TCP, and our own specialized transport protocol designed to run over IP. The
main action item is a study to decide whether (1) an enhanced implementation and
operating system for TCP will provide su�cient performance, (2) a standardized
simple reliability mechanism can be e�ectively provided on UDP, or (3) whether one
of the current media-speci�c protocols should be brought into the IP framework.

Support for high-performance application layer functions is also an open issue.
In particular, application layer framing and fast application demultiplexing may be
critical functionality. Currently, support for these issues is minimal.

Application layer framing is concerned with providing the e�cient communica-
tion of application-sized data chunks (e.g. a disk block or track) using packet sizes
provided by the lower layers. A simple case of this would be using a path MTU
(maximum transmission unit) discovery mechanism to �nd that the physical network
supports 20Kbyte packets, using TCP's Maximum Segment Size option to coordinate
the transport layers, and providing this information to the application so it can send
an integral number of its data blocks. However, this issue becomes more complex as
application data units become larger than a single network packet. Application layer
framing not only deals with protocol issues such as packet sizes and transport-layer
fragmentation, but also must be integrated with other sources of overhead in the sys-
tem such as interrupts and context switches (per network packet or per application
data unit) and data copies often required for packet reassembly.

Fast application-level demultiplexing and delivery is another issue, and one of the
areas media-speci�c protocol stacks are addressing (e.g., Fibre Channel allows data



blocks to be passed directly into pre-de�ned memory locations at a receiver, achieved
by processing all network protocols in the host adapter). The �rst component of
this issue is simply an e�cient mechanism to associate an incoming packet with the
expecting receiver. If there are thousands of open connections, a poor implementation
of TCP, for example, can require considerable overhead to �nd the appropriate match
on the tuple:

<source address, destination address, source port, destination port>

Implementations can use hashing or caching of recently active session to improve
performance, but another option to examine is providing a short header \handle"
that applications may pass back and forth. Providing for application-speci�c delivery
or disposition of data is also an important area of research [9, 16, 2, 27].

4 Implementation and System Issues

Many of TCP/IP's known performance problems come from outdated implementa-
tions or restrictions imposed from outside. In this section, we address some of those
concerns in the context of implementing TCP/IP inside a network attached periph-
eral.

Changing to larger data units can dramatically reduce the CPU load at high
data rates. On media that support large packet sizes, the �rst step in reducing CPU
utilization and increasing throughput is to increase the packet size, which IP supports.
For disk drives, data payloads which conveniently map to �le system pages, such as
4KB, may be particularly e�cient.

Much of the CPU cost of networking in general-purpose hosts comes from con-
text switches and virtual memory management. With a lightweight, real memory
embedded operating system in the NAPs, context switches are inexpensive. Without
virtual memory, maintenance of page tables, with their associated locking, mapping
and protection, is unnecessary.

Reduction of data-touching operations is required to achieve high performance
with minimal CPU cost. Data touching takes two forms, data copies and checksum
calculation.

Data copies are reduced through integrated layer processing and possibly the use
of zero-copy APIs, without the overhead of the Berkeley sockets layer. Data may be
shared directly between the \application" (the SCSI command processor/disk drive
track bu�er manager, in the case of a disk drive) and the networking stack [8]. Fast
demultiplexing of received data can also be used.

The overhead of the checksum can be eliminated in several ways. The simplest but
least desirable option is to eliminate it and depend on the LAN checksum to protect
the data; this is common today for UDP, but does not protect data end-to-end or
across network boundaries. Alternatively, the CPU can calculate the checksum in
conjunction with a data copy [20]. This can generally be done for zero cost on RISC
processors by putting the adds in the delay slots of loads and stores. The checksum can
also be calculated on any data movement, such as the reception from the network or
from the disk platter into bu�er memory, with simple hardware modi�cations [11, 23].



It is possible to store the TCP checksum on disk with the data by reformatting the disk
with a larger sector size. Because the checksum is additive, storing it with each sector
allows quick calculation regardless of the packet boundaries used for transmission.

The remaining per-packet CPU costs can be controlled by careful use of a \fast
path" through the system, in which the common case is optimized at the expense
of unusual cases. For example, TCP header prediction assumes that most packets
are either an in-order data packet or the next expected ACK, and simple optimized
tests for these cases appear very early in the code. This improves performance for the
majority of packets, but is additional (and redundant) processing for packets arriving
out of order.

5 Netstation Implementation Experience

The Netstation Project has implemented prototype IP NAPs as part of its research
into a LAN-based system architecture. We have built a display NAP based on a
custom hardware design, and are currently completing a camera NAP based on the
same hardware components as the display. Other NAPs, including the IP disk and
keyboard, are emulated using SUN workstations. Netstation uses Sparc 20/71 work-
stations running SunOS 4.1.3 as the \CPU nodes" that control and access the IP
NAPs.

The remainder of this section provides a summary of the Netstation Project, and
describes our IP NAP implementations with a focus on the IP stack performance and
overhead.

5.1 Netstation Overview

Netstation [10, 12] is a heterogeneous distributed system composed of processor nodes
and peripherals (NAPs) attached to a high-speed LAN which provides high aggregate
bandwidth; currently we use both a 640 Mbps Myrinet network and a 100 Mbps
ethernet.

Netstation is predicated on the observation that shared I/O buses provide poor
scalability, and are falling behind the technology curve of high-speed LANs. By con-
necting peripherals directly to a switched high-speed LAN, a Netstation system can
avoid the shared-bus bottleneck. This allows Netstation components to communicate
directly with each other, without intervention of the main system processor or server
processor, e.g. a user can initiate a disk backup to tape, and have negligible impact
on a resource-intensive multimedia conference. This sharing of resources also creates

exibility in system con�guration.

The ultimate Netstation goal is a ubiquitous network-based architecture, but the
results can also be applied individually to produce NAPs. The Netstation project
concentrates on operating systems mechanisms and network protocols for NAPs. Net-
station provides a single system image, allowing the CPU to access the NAPs in a
manner as similar as possible to directly attached devices. Because the devices are
attached to an open network with both trusted and untrusted nodes on the net, safe
shared access and security at the NAPs are critical.



Netstation has developed an abstraction we refer to as the derived virtual device,
or DVD [25], that provides the mechanisms for safe shared device access. DVDs pro-
vide a protected execution context at the device, allowing direct use of the devices
by untrusted clients, such as user applications. The owner of a device, or its man-
aging process, speci�es the DVD resources, DVD interface, and the security policy,
then initializes this con�guration at the NAP; in turn, the NAP's DVD provides the
speci�ed interface to these resources and enforces the access policy. We believe that
DVDs can accommodate all of the issues regarding shared access to NAPs, including
third-party I/O transfers. Thus, a camera can be granted write access to a restricted
region of a frame bu�er, or a user application can be given read-only access to a DVD
which represents a disk-based �le or disk partition.

Netstation has a number of IP NAP prototypes in various stages of development.
A custom motherboard provides the basis for our Netstation display NAP, which
provides a network-attached frame bu�er interface. The display is controlled by an
adapted version of the MIT X11R5 server, which drives its frame bu�er remotely
across the network. A camera NAP based on the same motherboard is under devel-
opment. Support for third-party I/O, in which video will be transferred directly from
the camera NAP to the display NAP, is a near-term goal. Netstation has also im-
plemented an IPdisk, an emulated network-attached disk drive. Access to the IPdisk
is made via the Virtual Internet SCSI Adapter (VISA), which provides a SCSI-to-
DVD translation to support access to storage peripherals via the network. A simple
keyboard NAP was also prototyped earlier in the project.

Described below is our experience with two di�erent IP stack implementations; a
summary of the standard SunOS IP stack performance for the IPdisk, and a more
thorough discussion of our own TCP/IP implementation for the custom Netstation
display system.

5.2 IPdisk Performance and Issues

IPdisk is our emulated network-attached SCSI disk drive. It currently runs as a
user process on a Sun workstation. It provides all the mandatory commands for a
SCSI direct access device, including TEST UNIT READY, RESERVE, RELEASE,
READ, WRITE, FORMAT, and others. Commands and data can be sent via either
TCP connections or UDP datagrams with a simple reliability mechanism. Support
for third party copy between IPdisks in cooperation with the �le system is currently
under development. This will move data directly from disk to disk via the network,
without consuming memory or bus bandwidth at the controlling host.

VISA, our Virtual Internet SCSI Adapter, is an operating system module added
to SunOS. It implements a scsi transport layer in the layered device driver system,
accepting commands from the higher-level SCSI disk and tape drivers and packaging
and transmitting them to the appropriate devices. The SCSI disk driver and all of
the �le system components are completely standard; a normal fast �le system is built
on top of the IPdisk. The VISA module is roughly 2,000 lines of C code added to the
SunOS kernel, less than the amount for the standard SCSI host bus adapter.

Preliminary performance measurements indicate that VISA is capable of running



at a write rate of 72 Mbps (megabits per second) on a 75MHz SPARCstation 20/71
through the �le system to IPdisk via UDP over Myrinet. The same CPU is predicted
to reach 110 Mbps through the �le system over an in�nitely fast SCSI bus to an
in�nitely fast disk, limited primarily by the OS's ability to manage the virtual memory
system. Known optimizations and reductions in the number of data copies could be
expected to raise the data rate to 90-95 Mbps, or above 80% of that achievable
with a SCSI bus, without the addition of special network coprocessors. We feel this
performance is acceptable, and that this supports our premise that the advantages of
IP outweigh the performance concerns.

A more detailed description of VISA and its performance can be found in [24].

5.3 Netstation Display

The Netstation display hardware is a custom motherboard centered around TI's
40MHz TMS-320c80 MVP chip, selected primarily for its high performance video and
data transfer controllers. A PCI bridge chip (V3 Semiconductor's V960PBC) provides
a path from the main C80 bus to an o�-the-shelf Intel EtherExpress PR0/100 inter-
face card and shared packet bu�er memory. The display hardware also includes an
audio subsystem and provisions for two JPEG decompression cards that are under
development.

The display operating system is based on the software in the TI development kit,
speci�cally the C8x Multitasking Executive, release 2.0, and the accompanying run-
time libraries. The C8x executive provides basic synchronization, communication,
and task primitives to support cooperative multitasking in a single shared memory
space. This executive is fairly lightweight and e�cient; the pro�led baseline kernel
performance takes 115 clock cycles (2.875 microsecond at 40 MHz) to preempt, switch
context, and transfer a message between two tasks.

The TCP/IP stack, including device drivers for the PCI bridge and Intel Ethernet
board, is built on top of the OS primitives. Initially, we facilitated development by
instantiating a simple task to handle each layer and each side (send and receive) of
the communication stack. Over time, we have revised the structure of the system to
include two primary tasks: (1) a task to handle the low-level driver, and to process
the receive-side of ethernet and IP, and (2) a TCP task to provide the application's
network API, which also processes IP and ethernet send-side functionality before
passing packets to the low-level task for transmission.

Data copies in the system are kept to a minimum by exploiting the shared-memory
model of the OS. Currently, a sending application copies data into bu�ers to be sent,
and after being passed between tasks by reference, the data is copied out of the
system to the ethernet board for transmission; the receive side incurs two analogous
copies. We believe the current structure would allow us to eliminate one copy in each
direction with minimal e�ort, using mechanisms such as scatter-gather vectors and
requiring application cooperation to manage bu�er memory.



5.3.1 TCP/IP for the Netstation Display

The network and transport layer functionality currently implemented for the Netsta-
tion display includes: IP, TCP, Address Resolution Protocol (ARP), and the echo
function of the Internet Control Message Protocol (ICMP). We have not yet imple-
mented UDP, however, it is straightforward and would be much simpler than TCP to
implement. The ICMP function was included for testing and debugging of the low-
level drivers. We believe these �ve components represent the minimal stack needed
to communicate in a TCP/IP environment, and that this is a reasonable amount of
functionality to include in a NAP.

The IP, ARP, and ICMP protocols were implemented from scratch. Our TCP
implementation is based on INRIA's user-level TCP [5], which in turn is based on
BSD TCP. Note that our TCP implementation does not run as part of the user task,
rather we take advantage of the low-overhead kernel primitives and manage TCP as a
separate task. We also manage data bu�ers and the user API di�erently than either
the INRIA or Berkeley implementation.

The amount of memory required to implement this functionality at a NAP is
also reasonable, and should not be a burden on potentially limited NAP resources.
Further, assuming the amount of code is indicative of the e�ort required for the
development of an IP NAP, this too seems reasonable. Table 1 enumerates the amount
of C code and the memory footprint of the Netstation networking and transport layer
stack, with the OS primitive information provided as a point of comparison.

Component C-Code Memory Footprint
(lines *.c) (bytes of static code)

ICMP 90 184
ARP 570 2804
IP 1210 6444
TCP 2700 12636
shared code 390 1248
user lib 630 3908
TCP/IP Total 5590 27224
Reference pts:
OS Primitives 3400 7708
OS Libraries 2300 3860

Table 1: TCP/IP Code Size

Other functionality (e.g. DNS, RARP, SNMP, etc) would be useful to facilitate
monitoring, con�guration, and other administrative functions, and the existence of
these networking standards might further simplify the development of commodity
NAPs. However, these additional components are not necessary for NAP commu-
nication, and should not be considered part of the \TCP/IP baggage" that might
prevent the adoption of IP for NAPs. An actual IP host will have additional func-
tionality, per the Host Requirements RFCs [4, 3], however, we believe IP NAPs would



have a similar, but reduced, set of requirements.
The performance of the display TCP/IP implementation is currently being eval-

uated, concurrently with �nal hardware and software debugging and tuning.

6 Summary

This paper suggests that the TCP/UDP/IP framework o�ers considerable advantages
for network-attached peripherals, in particular cross-media bridging, ubiquity, and
the existence of considerable prior work. We have argued that using IP for network
attached peripherals is preferable to the development of speci�c networking protocols
optimized for each new physical media.

We have addressed the primary concern regarding IP for NAPs, pointing out that
the performance of IP is strongly dependent on the operating system environment and
the particular implementation. We suggest that IP performance would be su�cient,
if the e�orts to develop NAP speci�c protocols were redirected toward optimizing IP
for the NAP environment.

Finally, we have described the Netstation project's use of the TCP/IP network
protocol suite as the means to access several di�erent types of peripherals, including
disk drives and displays. We have shown how access to our IPdisk using VISA can per-
form at over 80% of a native SCSI disk performance using simple known optimizations
to SunOS UDP. There is reason to believe that additional performance improvements
would be achieved in a typical light-weight embedded NAP implementation.

Our conclusion is that IP is the appropriate choice for interconnecting subsystems
and that the desired performance is feasible, although additional work is required
before the performance reaches su�cient levels.

Acknowledgments

This research was sponsored by the Defense Advanced Research Projects Agency
under Contract No. DABT63-93-C-0062. Views and conclusions contained in this
report are the authors' and should not be interpreted as representing the o�cial
opinion or policies, either expressed or implied, of DARPA, the U.S. Government, or
any person or agency connected with them.

References

[1] J. F. Adam, H. H. Houh, M. Ismert, and D. L. Tennenhouse. Media-intensive
data communications in a "desk-area" network. IEEE Communications, pages
60{67, Aug. 1994.

[2] M. L. Bailey, M. A. Pagels, and L. L. Peterson. The x-chip: An experiment
in hardware demultiplexing. In Proceedings of the IEEE Workshop on High
Performance Communications Subsystems, Feb. 1991.

[3] R. Braden. Requirements for internet hosts - application and support. Internet
Draft RFC 1123, USC/ISI, Oct. 1989.



[4] R. Braden. Requirements for internet hosts - communication layers. Internet
Draft RFC 1122, USC/ISI, Oct. 1989.

[5] T. Braun, C. Diot, A. H�oglander, and V. Roca. An experimental user level
implementation of TCP. Technical Report RR-2650, INRIA, Sept. 1995.

[6] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An analysis of TCP
processing overhead. IEEE Communications, 27(6):23{29, June 1989.

[7] D. Cohen. On holy wars and a plea for peace. IEEE Computer, Oct. 1981.

[8] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth cross-domain transfer
facility. In Proc. Fourteenth ACM Symposium on Operating Systems Principles.
ACM, Dec. 1993.

[9] D. R. Engler and M. F. Kaashoek. DPF: Fast, 
exible message demultiplexing
using dynamic code generation. In Proc. SIGCOMM '96, volume 26, pages 53{59.
ACM, Oct. 1996.

[10] G. Finn. An integration of network communication with workstation architec-
ture. ACM Computer Communication Review, Oct. 1991. Available online at
http://www.isi.edu/netstation/.

[11] G. Finn, S. Hotz, and R. Van Meter. The impact of a zero-scan internet check-
summing mechanism. ACM Computer Communication Review, 26(5):27{39, Oct.
1996.

[12] G. G. Finn and P. Mockapetris. Netstation architecture: Multi-gigabit worksta-
tion network fabric. In Proc. NetWorld+InterOp Engineer Conference, 1994.

[13] G. Gibson et al. A case for network-attached secure disks. Technical Report
CMU-CS-96-142, CMU, June 1996.

[14] M. Hayter and D. McAuley. The desk area network. ACM Operating Systems
Review, 25(4):14{21, Oct. 1991.

[15] R. W. Horst and D. Garcia. ServerNet SAN I/O architecture. In R. Rettberg
and W. Dally, editors, Hot Interconnects Symposium V. IEEE Computer Society,
1997.

[16] J. S. Kay. Path IDs: A Mechanism for Reducing Network Software Latency. PhD
thesis, UCSD, 1995.

[17] B. Kobler, editor. Fifth NASA Goddard Conference on Mass Storage Systems
and Technologies, Sept. 1996.

[18] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Proc.
ACM Seventh International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, Oct. 1996.



[19] J. Mogul and S. Deering. Path MTU discovery. RFC 1191, Internet Request For
Comments, 1990.

[20] C. Partridge and S. Pink. A faster UDP. IEEE/ACM Trans. on Networking,
1(4):429{440, Aug. 1993.

[21] S. R. Soltis, T. M. Ruwart, and M. T. O'Keefe. The global �le system. In Kobler
[17], pages 319{342.

[22] Sun Microsystems Inc. NFS: Network �le system protocol speci�cation. Technical
Report RFC 1094, Internet Request For Comments, 1989.

[23] J. Touch and B. Parham. Implementing the internet checksum in hardware.
Technical Report Internet RFC 1936, ISI, Apr. 1996.

[24] R. Van Meter, G. Finn, and S. Hotz. VISA: Netstation's virtual internet SCSI
adapter. in preparation.

[25] R. Van Meter, S. Hotz, and G. Finn. Derived virtual devices: A secure distributed
�le system mechanism. In Kobler [17].

[26] D. Wiltzius and K. Minuzzo. Network-attached periph-
erals (NAP) for HPSS/SIOF. web page, Oct. 1995.
http://www.llnl.gov/liv comp/siof/siof nap.html.

[27] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss. E�cient packet
demultiplexing for multiple endpoints and large messages. In Proc. USENIX
Winter 1994 Technical Conference, Jan. 1994.


